IDEAS home Printed from https://ideas.repec.org/a/igg/jdst00/v13y2022i8p1-19.html
   My bibliography  Save this article

A Survey on Deep Learning Techniques in Fruit Disease Detection

Author

Listed:
  • Somya Goel

    (Jaypee Institute of Information Technology, India)

  • Kavita Pandey

    (Jaypee Institute of Information Technology, India)

Abstract

The improvement in computer vision techniques made the implementation of various agriculture related problems easy. One such problem is fruit disease detection. There has been enormous research on different fruits like the apple, mango, olive, kiwi, orange, passion fruit, and others using deep learning techniques. This article summarizes the major contributions of this field over past few years. As per the authors' knowledge, there is no survey paper specifically on fruit disease detection using deep learning techniques. The technical analysis of deep learning techniques to predict diseases in fruits have been done in this article. The study also presents a comparative study of image acquisition, image pre-processing, and segmentation techniques along with the deep learning models used. The study concluded the fact that the best fit deep learning model can be different depending on the computation power of the system and the data used. Directions of future research have also been discussed in the article.

Suggested Citation

  • Somya Goel & Kavita Pandey, 2022. "A Survey on Deep Learning Techniques in Fruit Disease Detection," International Journal of Distributed Systems and Technologies (IJDST), IGI Global, vol. 13(8), pages 1-19, July.
  • Handle: RePEc:igg:jdst00:v:13:y:2022:i:8:p:1-19
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJDST.307901
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jdst00:v:13:y:2022:i:8:p:1-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.