IDEAS home Printed from https://ideas.repec.org/a/igg/jcini0/v5y2011i3p73-85.html
   My bibliography  Save this article

On Machine Symbol Grounding and Optimization

Author

Listed:
  • Oliver Kramer

    (Bauhaus-University Weimar, Germany)

Abstract

From the point of view of an autonomous agent the world consists of high-dimensional dynamic sensorimotor data. Interface algorithms translate this data into symbols that are easier to handle for cognitive processes. Symbol grounding is about whether these systems can, based on this data, construct symbols that serve as a vehicle for higher symbol-oriented cognitive processes. Machine learning and data mining techniques are geared towards finding structures and input-output relations in this data by providing appropriate interface algorithms that translate raw data into symbols. This work formulates the interface design as global optimization problem with the objective to maximize the success of the overlying symbolic algorithm. For its implementation various known algorithms from data mining and machine learning turn out to be adequate methods that do not only exploit the intrinsic structure of the subsymbolic data, but that also allow to flexibly adapt to the objectives of the symbolic process. Furthermore, this work discusses the optimization formulation as a functional perspective on symbol grounding that does not hurt the zero semantical commitment condition. A case study illustrates technical details of the machine symbol grounding approach.

Suggested Citation

  • Oliver Kramer, 2011. "On Machine Symbol Grounding and Optimization," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 5(3), pages 73-85, July.
  • Handle: RePEc:igg:jcini0:v:5:y:2011:i:3:p:73-85
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijcini.2011070105
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jcini0:v:5:y:2011:i:3:p:73-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.