Author
Listed:
- Mercedes Hidalgo-Herrero
(Universidad Complutense de Madrid, Spain)
- Ismael Rodríguez
(Universidad Complutense de Madrid, Spain)
- Fernando Rubio
(Universidad Complutense de Madrid, Spain)
Abstract
In this article we perform some experiments to study how an automatic system learns a set of rules from its interaction with an artificial environment. In particular, we are interested in comparing these capabilities to the skills shown by humans to learn the same rules in similar conditions. We perform this analysis by conducting two experiments. On the one hand, we observe the evolution of the automatic learning system in terms of its performance along time. At the beginning, the system does not know the rules, but it can observe the positive/negative results of its decisions. As its knowledge about the environment becomes more precise, its performance improves. On the other hand, seventy students faced the same artificial environment in the same conditions, though this time the experiment was presented as a game. The objective of the game consists in gaining points, but the rules of the game are not known a priori. So, there is a clear incentive for finding them out. We use these experiments to compare the learning curves of both humans and automatic systems, and we use this information to analyze the similarities/differences between both learning processes. In particular, we are interested in assessing how close the automatic system is from passing the Turing test.
Suggested Citation
Mercedes Hidalgo-Herrero & Ismael Rodríguez & Fernando Rubio, 2009.
"Comparing Learning Methods,"
International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 3(3), pages 12-26, July.
Handle:
RePEc:igg:jcini0:v:3:y:2009:i:3:p:12-26
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jcini0:v:3:y:2009:i:3:p:12-26. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.