IDEAS home Printed from https://ideas.repec.org/a/igg/jcini0/v16y2022i1p1-19.html
   My bibliography  Save this article

Improved Model Based on GoogLeNet and Residual Neural Network ResNet

Author

Listed:
  • Xuehua Huang

    (Hunan City University, China)

Abstract

To improve the accuracy of image classification, a kind of improved model is proposed. The shortcut is added to GoogLeNet inception v1 and several other ways of shortcut are given, and they are GRSN1_2, GRSN1_3, GRSN1_4. Among them, the information of the input layer is directly output to each subsequent layer in the form of shortcut. The new improved model has the advantages of multi-size and small convolution kernel in the same layer in the network and the advantages of shortcut to reduce information loss. Meanwhile, as the number of inception blocks increases, the number of channels is increased to deepen the extraction of information. The GRSN, GRSN1_2, GRSN1_3, GRSN1_4, GoogLeNet, and ResNet models were compared on cifar10, cifar100, and mnist datasets. The experimental results show that the proposed model has 3.07% improved to ResNet on data set cifar10, 2.08% on data set cifar100, 17.69% improved to GoogLeNet on data set cifar10, 28.47% on data set cifar100.

Suggested Citation

  • Xuehua Huang, 2022. "Improved Model Based on GoogLeNet and Residual Neural Network ResNet," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 16(1), pages 1-19, January.
  • Handle: RePEc:igg:jcini0:v:16:y:2022:i:1:p:1-19
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJCINI.313442
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jcini0:v:16:y:2022:i:1:p:1-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.