IDEAS home Printed from https://ideas.repec.org/a/igg/jcini0/v15y2021i4p1-30.html
   My bibliography  Save this article

Object-Based Scene Classification Modeled by Hidden Markov Models Architecture

Author

Listed:
  • Benrais Lamine

    (USTHB, Bab Ezzouar, Algeria)

  • Baha Nadia

    (USTHB, Bab Ezzouar, Algeria)

Abstract

Multiclass classification problems such as document classification, medical diagnosis or scene classification are very challenging to address due to similarities between mutual classes. The use of reliable tools is necessary to get good classification results. This paper addresses the scene classification problem using objects as attributes. The process of classification is modeled by a famous mathematical tool: The Hidden Markov Models. We introduce suitable relations that scale the parameters of the Hidden Markov Model into variables of scene classification. The construction of Hidden Markov Chains is supported with weight measures and sorting functions. Lastly, inference algorithms extract most suitable scene categories from the Discrete Markov Chain. A parallelism approach constructs several Discrete Markov Chains in order to improve the accuracy of the classification process. We provide numerous tests on different datasets and compare classification accuracies with some state of the art methods. The proposed approach distinguishes itself by outperforming the other.

Suggested Citation

  • Benrais Lamine & Baha Nadia, 2021. "Object-Based Scene Classification Modeled by Hidden Markov Models Architecture," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(4), pages 1-30, October.
  • Handle: RePEc:igg:jcini0:v:15:y:2021:i:4:p:1-30
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJCINI.20211001.oa6
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jcini0:v:15:y:2021:i:4:p:1-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.