IDEAS home Printed from https://ideas.repec.org/a/igg/jcini0/v15y2021i4p1-21.html
   My bibliography  Save this article

Research of Image Recognition of Plant Diseases and Pests Based on Deep Learning

Author

Listed:
  • Wang Ke Feng

    (Jiangsu University of Technology, China)

  • Huang Xue Hua

    (Hunan City University, China)

Abstract

Deep learning has attracted more and more attention in speech recognition, visual recognition and other fields. In the field of image processing, using deep learning method can obtain high recognition rate. In this paper, the convolution neural network is used as the basic model of deep learning. The shortcomings of the model are analyzed, and the DBN is used for the image recognition of diseases and insect pests. In the experiment, firstly, we select 10 kinds of disease and pest leaves and 50000 normal leaves, each of which is used for the comparison of algorithm performance.In the judgment of disease and pest species, the algorithm proposed in this study can identify all kinds of diseases and insect pests to the maximum extent, but the corresponding software (openCV, Access) recognition accuracy will gradually reduce along with the increase of the types of diseases and insect pests. In this study, the algorithm proposed in the identification of diseases and insect pests has been kept at about 45%.

Suggested Citation

  • Wang Ke Feng & Huang Xue Hua, 2021. "Research of Image Recognition of Plant Diseases and Pests Based on Deep Learning," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(4), pages 1-21, October.
  • Handle: RePEc:igg:jcini0:v:15:y:2021:i:4:p:1-21
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJCINI.295810
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jcini0:v:15:y:2021:i:4:p:1-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.