IDEAS home Printed from https://ideas.repec.org/a/igg/jcini0/v15y2021i4p1-20.html
   My bibliography  Save this article

A Fuzzy Adaptive Firefly Algorithm for Multilevel Color Image Thresholding Based on Fuzzy Entropy

Author

Listed:
  • Yi Wang

    (Guangdong University of Science and Technology, Dongguan, China)

  • Kangshun Li

    (South China Agricultural University, Guangzhou, China)

Abstract

Multilevel thresholding image segmentation has always been a hot issue of research in last several years since it has a plenty of applications. Traditional exhaustive search method consumes a lot of time for searching the optimal multilevel thresholding, color images contain more information, solving multilevel thresholding will become worse. However, the meta-heuristic search algorithm has unique advantages in solving multilevel threshold values. In this paper, a fuzzy adaptive firefly algorithm (FaFA) is proposed to solve the optimal multilevel thresholding for color images, and the fuzzy Kapur's entropy is considered as its objective function. In the FaFA, a fuzzy logical controller is designed to adjust the control parameters. A total of six satellite remote sensing color images are conducted in the experiments. The performance of the FaFA is compared with FA, BWO, SSA, NaFA and ODFA. Some measure metrics are performed in the experiments. The experimental results show that the FaFA obviously outperforms other five algorithms.

Suggested Citation

  • Yi Wang & Kangshun Li, 2021. "A Fuzzy Adaptive Firefly Algorithm for Multilevel Color Image Thresholding Based on Fuzzy Entropy," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(4), pages 1-20, October.
  • Handle: RePEc:igg:jcini0:v:15:y:2021:i:4:p:1-20
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJCINI.20211001.oa44
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jcini0:v:15:y:2021:i:4:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.