IDEAS home Printed from https://ideas.repec.org/a/igg/jcini0/v15y2021i3p1-11.html
   My bibliography  Save this article

Entity-Extraction Using Hybrid Deep-Learning Approach for Hindi text

Author

Listed:
  • Richa Sharma

    (Banasthali Vidyapith, India)

  • Sudha Morwal

    (Banasthali Vidyapith, India)

  • Basant Agarwal

    (Indian Institute of Information Technology, Kota, India)

Abstract

This article presents a neural network-based approach to develop named entity recognition for Hindi text. In this paper, the authors propose a deep learning architecture based on convolutional neural network (CNN) and bi-directional long short-term memory (Bi-LSTM) neural network. Skip-gram approach of word2vec model is used in the proposed model to generate word vectors. In this research work, several deep learning models have been developed and evaluated as baseline systems such as recurrent neural network (RNN), long short-term memory (LSTM), Bi-LSTM. Furthermore, these baseline systems are promoted to a proposed model with the integration of CNN and conditional random field (CRF) layers. After a comparative analysis of results, it is verified that the performance of the proposed model (i.e., Bi-LSTM-CNN-CRF) is impressive. The proposed system achieves 61% precision, 56% recall, and 58% F-measure.

Suggested Citation

  • Richa Sharma & Sudha Morwal & Basant Agarwal, 2021. "Entity-Extraction Using Hybrid Deep-Learning Approach for Hindi text," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(3), pages 1-11, July.
  • Handle: RePEc:igg:jcini0:v:15:y:2021:i:3:p:1-11
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJCINI.20210701.oa1
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jcini0:v:15:y:2021:i:3:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.