IDEAS home Printed from https://ideas.repec.org/a/igg/jcini0/v15y2021i2p34-48.html
   My bibliography  Save this article

An AI Using Construction Grammar to Understand Text: Parsing Improvements

Author

Listed:
  • Denis Kiselev

    (Hikima.Net, Sapporo, Japan)

Abstract

This paper describes an AI that uses construction grammar (CG)—a means of knowledge representation for deep understanding of text. The proposed improvements aim at more versatility of the text form and meaning knowledge structure, as well as for intelligent choosing among possible parses. Along with the improvements, computational CG techniques that form the implementation basis are explained. Evaluation experiments utilize a Winograd schema (WS)—a major test for AI—dataset and compare the implementation with state-of-the-art ones. Results have demonstrated that compared with such techniques as deep learning, the proposed CG approach has a higher potential for the task of anaphora resolution involving deep understanding of the natural language.

Suggested Citation

  • Denis Kiselev, 2021. "An AI Using Construction Grammar to Understand Text: Parsing Improvements," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(2), pages 34-48, April.
  • Handle: RePEc:igg:jcini0:v:15:y:2021:i:2:p:34-48
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJCINI.20210401.oa4
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jcini0:v:15:y:2021:i:2:p:34-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.