Author
Listed:
- Meera Dash
(ITER, Siksha 'O' Anusandhan (Deemed), Bhubaneswar, India)
- Trilochan Panigrahi
(National Institute of Technology Goa, India)
- Renu Sharma
(ITER, Siksha 'O' Anusandhan (Deemed), Bhubaneswar, India)
- Mihir Narayan Mohanty
(ITER, Siksha 'O' Anusandhan (Deemed), Bhubaneswar, India)
Abstract
Distributed estimation of parameters in wireless sensor networks is taken into consideration to reduce the communication overhead of the network which makes the sensor system energy efficient. Most of the distributed approaches in literature, the sensor system is modeled with finite impulse response as it is inherently stable. Whereas in real time applications of WSN like target tracking, fast rerouting requires, infinite impulse response system (IIR) is used to model and that has been chosen in this work. It is assumed that every sensor node is equipped with IIR adaptive system. The diffusion least mean square (DLMS) algorithm is used to estimate the parameters of the IIR system where each node in the network cooperates themselves. In a sparse WSN, the performance of a DLMS algorithm reduces as the degree of the node decreases. In order to increase the estimation accuracy with a smaller number of iterations, the sensor node needs to share their information with more neighbors. This is feasible by communicating each node with multi-hop nodes instead of one-hop only. Therefore the parameters of an IIR system is estimated in distributed sparse sensor network using multihop diffusion LMS algorithm. The simulation results exhibit superior performance of the multihop diffusion LMS over non-cooperative and conventional diffusion algorithms.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jcini0:v:14:y:2020:i:4:p:30-41. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.