IDEAS home Printed from https://ideas.repec.org/a/igg/jcini0/v14y2020i2p61-76.html
   My bibliography  Save this article

Exploiting Visual Features in Financial Time Series Prediction

Author

Listed:
  • Adil Gürsel Karaçor

    (Atilim University, Ankara, Turkey)

  • Turan Erman Erkan

    (Atilim University, Ankara, Turkey)

Abstract

The possibility to enhance prediction accuracy for foreign exchange rates was investigated in two ways: first applying an outside the box approach to modeling price graphs by exploiting their visual properties, and secondly employing the most efficient methods to detect patterns to classify the direction of movement. The approach that exploits the visual properties of price graphs which make use of density regions along with high and low values describing the shape; hence, the authors propose the name ‘Finance Vision.' The data used in the predictive model consists of 1-hour past price values of 4 different currency pairs, between 2003 and 2016. Prediction performances of state-of-the-art methods; Extreme Gradient Boosting, Artificial Neural Network and Support Vector Machines are compared over the same data with the same sets of features. Results show that density based visual features contribute considerably to prediction performance.

Suggested Citation

  • Adil Gürsel Karaçor & Turan Erman Erkan, 2020. "Exploiting Visual Features in Financial Time Series Prediction," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 14(2), pages 61-76, April.
  • Handle: RePEc:igg:jcini0:v:14:y:2020:i:2:p:61-76
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJCINI.2020040104
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jcini0:v:14:y:2020:i:2:p:61-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.