IDEAS home Printed from https://ideas.repec.org/a/igg/jcini0/v11y2017i3p1-16.html
   My bibliography  Save this article

Biometric Pattern Recognition from Social Media Aesthetics

Author

Listed:
  • Samiul Azam

    (Department of Computer Science, University of Calgary, Calgary, Canada)

  • Marina L. Gavrilova

    (Department of Computer Science, University of Calgary, Calgary, Canada)

Abstract

Online social media (OSN) has witnessed a significant growth over past decade. Millions of people now share their thoughts, emotions, preferences, opinions and aesthetic information in the form of images, videos, music, texts, blogs and emoticons. Recently, due to existence of person specific traits in media data, researchers started to investigate such traits with the goal of biometric pattern analysis and recognition. Until now, gender recognition from image aesthetics has not been explored in the biometric community. In this paper, the authors present an authentic model for gender recognition, based on the discriminating visual features found in user favorite images. They validate the model on a publicly shared database consisting of 24,000 images provided by 120 Flickr (image based OSN) users. The authors propose the method based on the mixture of experts model to estimate the discriminating hyperplane from 56 dimensional aesthetic feature space. The experts are based on k-nearest neighbor, support vector machine and decision tree methods. To improve the model accuracy, they apply a systematic feature selection using statistical two sampled t-test. Moreover, the authors provide statistical feature analysis with graph visualization to show discriminating behavior between male and female for each feature. The proposed method achieves 77% accuracy in predicting gender, which is 5% better than recently reported results.

Suggested Citation

  • Samiul Azam & Marina L. Gavrilova, 2017. "Biometric Pattern Recognition from Social Media Aesthetics," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 11(3), pages 1-16, July.
  • Handle: RePEc:igg:jcini0:v:11:y:2017:i:3:p:1-16
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJCINI.2017070101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jcini0:v:11:y:2017:i:3:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.