IDEAS home Printed from https://ideas.repec.org/a/igg/jcac00/v12y2022i1p1-22.html
   My bibliography  Save this article

Improving Virtual Machine Migration Effects in Cloud Computing Environments Using Depth First Inspired Opportunity Exploration

Author

Listed:
  • Kamal Kumar

    (National Institute of Technology, Uttarakhand, India)

  • Jyoti Thaman

    (Independent Researcher, India)

Abstract

The cloud platform has established itself as the de-facto standard in IT outsourcing. This is resulting in large-scale migration of infrastructure and development platforms from in-house to cloud service providers. Many recent proposals on cloud platforms have addressed several issues that appeared on the cloud horizon. VM placement (VMP) has been a serious concern when it comes to placement of VMs after migration or VM reallocation. Most of the recent works have lacked multiple VM placement (MVMP) problem instances. A recently researched idea of MVMP through depth first opportunistic exploration (DFOE) is proposed in this paper. The performance of MVMP is compared with existing single VM placement benchmark algorithm. Improvement in terms of number of VM migrations, energy consumption, and VM reallocation is reported through simulation of real-time load scenario. Cloud environments can benefit from MVMP and improve operating margins in terms of power saving and load balancing.

Suggested Citation

  • Kamal Kumar & Jyoti Thaman, 2022. "Improving Virtual Machine Migration Effects in Cloud Computing Environments Using Depth First Inspired Opportunity Exploration," International Journal of Cloud Applications and Computing (IJCAC), IGI Global, vol. 12(1), pages 1-22, January.
  • Handle: RePEc:igg:jcac00:v:12:y:2022:i:1:p:1-22
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJCAC.314209
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jcac00:v:12:y:2022:i:1:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.