IDEAS home Printed from https://ideas.repec.org/a/igg/jcac00/v10y2020i3p1-16.html
   My bibliography  Save this article

Multi-Factor Performance Comparison of Amazon Web Services Elastic Compute Cluster and Google Cloud Platform Compute Engine

Author

Listed:
  • Sanjay P. Ahuja

    (University of North Florida, USA)

  • Emily Czarnecki

    (University of North Florida, USA)

  • Sean Willison

    (University of North Florida, USA)

Abstract

Cloud computing has rapidly become a viable competitor to on-premise infrastructure from both management and cost perspectives. This research provides insight into cluster computing performance and variability in cloud-provisioned infrastructure from two popular public cloud providers. A comparative examination of the two cloud platforms using synthetic benchmarks is provided. In this article, we compared the performance of Amazon Web Services Elastic Compute Cluster (EC2) to the Google Cloud Platform (GCP) Compute Engine using three benchmarks: STREAM, IOR, and NPB-EP. Experiments were conducted on clusters with increasing nodes from one to eight. We also performed experiments over the course of two weeks where benchmarks were run at similar times. The benchmarks provided performance metrics for bandwidth (STREAM), read and write performance (IOR), and operations per second (NPB-EP). We found that EC2 outperformed GCP for bandwidth. Both provided good scalability and reliability for bandwidth with GCP showing a slight deviation during the two-week trial. GCP outperformed EC2 in both the read and write tests (IOR) as well as the operations per second test. However, GCP was extremely variable during the read and write tests over the two-week trial. Overall, each platform excelled in different benchmarks and we found EC2 to be more reliable in general.

Suggested Citation

  • Sanjay P. Ahuja & Emily Czarnecki & Sean Willison, 2020. "Multi-Factor Performance Comparison of Amazon Web Services Elastic Compute Cluster and Google Cloud Platform Compute Engine," International Journal of Cloud Applications and Computing (IJCAC), IGI Global, vol. 10(3), pages 1-16, July.
  • Handle: RePEc:igg:jcac00:v:10:y:2020:i:3:p:1-16
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJCAC.2020070101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jcac00:v:10:y:2020:i:3:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.