IDEAS home Printed from https://ideas.repec.org/a/igg/jban00/v9y2022i3p1-17.html
   My bibliography  Save this article

A Framework for Feature Selection Using Natural Language Processing for User Profile Learning for Recommendations of Healthcare-Related Content

Author

Listed:
  • Mona Tanwar

    (Amity University, Noida, India)

  • Sunil Kumar Khatri

    (Amity University in Tashkent, Uzbekistan)

  • Ravi Pendse

    (University of Michigan, USA)

Abstract

This paper presents the work done on recommendations of healthcare related journal papers by understanding the semantics of terms from the papers referred by users in past. In other words, user profiles based on user interest within the healthcare domain are constructed from the kind of journal papers read by the users. Multiple user profiles are constructed for each user based on different categories of papers read by the users. The proposed approach goes to the granular level of extrinsic and intrinsic relationship between terms and clusters highly semantically related relevant domain terms where each cluster represents a user interest area. The semantic analysis of terms is done starting from co-occurrence analysis to extract the intra-couplings between terms and then the inter-couplings are extracted from the intra-couplings and then finally clusters of highly related terms are formed. The experiments showed improved precision for the proposed approach as compared to the state-of-the-art technique with a mean reciprocal rank of 0.76.

Suggested Citation

  • Mona Tanwar & Sunil Kumar Khatri & Ravi Pendse, 2022. "A Framework for Feature Selection Using Natural Language Processing for User Profile Learning for Recommendations of Healthcare-Related Content," International Journal of Business Analytics (IJBAN), IGI Global, vol. 9(3), pages 1-17, July.
  • Handle: RePEc:igg:jban00:v:9:y:2022:i:3:p:1-17
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJBAN.292059
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jban00:v:9:y:2022:i:3:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.