IDEAS home Printed from https://ideas.repec.org/a/igg/jban00/v9y2022i1p1-16.html
   My bibliography  Save this article

The Impact of Data-Complexity and Team Characteristics on Performance in the Classification Model: Findings From a Collaborative Platform

Author

Listed:
  • Vitara Pungpapong

    (Chulalongkorn Business School, Chulalongkorn University, Thailand)

  • Prasert Kanawattanachai

    (Chulalongkorn Business School, Chulalongkorn University, Thailand)

Abstract

This article investigates the impact of data-complexity and team-specific characteristics on machine learning competition scores. Data from five real-world binary classification competitions hosted on Kaggle.com were analyzed. The data-complexity characteristics were measured in four aspects including standard measures, sparsity measures, class imbalance measures, and feature-based measures. The results showed that the higher the level of the data-complexity characteristics was, the lower the predictive ability of the machine learning model was as well. Our empirical evidence revealed that the imbalance ratio of the target variable was the most important factor and exhibited a nonlinear relationship with the model’s predictive abilities. The imbalance ratio adversely affected the predictive performance when it reached a certain level. However, mixed results were found for the impact of team-specific characteristics measured by team size, team expertise, and the number of submissions on team performance. For high-performing teams, these factors had no impact on team score.

Suggested Citation

  • Vitara Pungpapong & Prasert Kanawattanachai, 2022. "The Impact of Data-Complexity and Team Characteristics on Performance in the Classification Model: Findings From a Collaborative Platform," International Journal of Business Analytics (IJBAN), IGI Global, vol. 9(1), pages 1-16, January.
  • Handle: RePEc:igg:jban00:v:9:y:2022:i:1:p:1-16
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJBAN.288517
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jban00:v:9:y:2022:i:1:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.