IDEAS home Printed from https://ideas.repec.org/a/igg/jban00/v8y2021i1p1-20.html
   My bibliography  Save this article

Stock Market Prediction Using Elliot Wave Theory and Classification

Author

Listed:
  • Saeed Tabar

    (Ball State University, USA)

  • Sushil Sharma

    (Ball State University, USA)

  • David Volkman

    (University of Nebraska at Omaha, USA)

Abstract

The area of stock market prediction has attracted a great deal of attention during the past decade especially after multiple market crashes. By analyzing market price fluctuations, we can achieve valuable insight regarding future trends. This research proposes a novel method for prediction using pattern analysis and classification. For the first part of the research, a trend analysis algorithm, Elliot wave theory, is used to classify price patterns for DJIA, S&P500, and NASDAQ into three categories: LONG, SHORT, and HOLD. After labeling patterns, classification learning algorithms including decision tree, naïve Bayes, and support vector machine (SVM) are used to learn from the patterns and make a prediction for the future. The algorithm is implemented during the market crashes of May 2010 and August 2015, and the obtained results show that it correctly identifies the market volatility by issuing HOLD and SHORT signals during those crashes.

Suggested Citation

  • Saeed Tabar & Sushil Sharma & David Volkman, 2021. "Stock Market Prediction Using Elliot Wave Theory and Classification," International Journal of Business Analytics (IJBAN), IGI Global, vol. 8(1), pages 1-20, January.
  • Handle: RePEc:igg:jban00:v:8:y:2021:i:1:p:1-20
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJBAN.2021010101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jban00:v:8:y:2021:i:1:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.