IDEAS home Printed from https://ideas.repec.org/a/igg/jban00/v4y2017i1p36-55.html
   My bibliography  Save this article

Query Frequency based View Selection

Author

Listed:
  • Mohammad Haider Syed

    (Saudi Electronic University, Saudi Arabia)

  • T.V. Vijay Kumar

    (School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India)

Abstract

View selection deals with the selection of appropriate sets of views capable of improving the response times for queries while conforming to space constraints. Materializing all views is infeasible, as the number of possible views is exponential with respect to the number of dimensions and, thus, would not fit within the available storage space. Further, optimal view selection is an NP-Complete problem. Thus, the only remaining alternative is to select a subset of views that reduce the query response time and fit within the available space for materialization. The most fundamental greedy view selection algorithm HRUA considers the size parameter for computing the Top-K views for materialization. In each iteration, it computes the benefit, with respect to size, of all non-selected views, and selects the one entailing the highest benefit for materialization. Though these selected views may be beneficial in respect of their size, they may not be capable of answering large numbers of future queries thereby becoming an unnecessary space overhead. Existing query frequency based view selection algorithms, which address this problem, have been compared in this paper. Experimental results show that each of these algorithms, in comparison to HRUA, are able to select fairly good quality views that provide answers to comparatively greater numbers of queries. Materializing these selected views would facilitate the business decision making process.

Suggested Citation

  • Mohammad Haider Syed & T.V. Vijay Kumar, 2017. "Query Frequency based View Selection," International Journal of Business Analytics (IJBAN), IGI Global, vol. 4(1), pages 36-55, January.
  • Handle: RePEc:igg:jban00:v:4:y:2017:i:1:p:36-55
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJBAN.2017010103
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jay Prakash & T. V. Vijay Kumar, 2020. "Multi-objective materialized view selection using NSGA-II," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(5), pages 972-984, October.
    2. Jay Prakash & T. V. Vijay Kumar, 2020. "Multi-objective materialized view selection using MOGA," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 220-231, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jban00:v:4:y:2017:i:1:p:36-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.