IDEAS home Printed from https://ideas.repec.org/a/igg/jban00/v3y2016i4p1-20.html
   My bibliography  Save this article

Improving Online Course Performance Through Customization: An Empirical Study Using Business Analytics

Author

Listed:
  • Siva Sankaran

    (Department of Systems and Operations Management, California State University, Northridge, CA, USA)

  • Kris Sankaran

    (Department of Statistics, Stanford University, Stanford, CA, USA)

Abstract

The number of educational courses offered online is growing, with students often having no choice for alternative formats. However, personal characteristics may affect online academic performance. In this study, the authors apply two business analytics methods - multiple linear/polynomial regression and generalized additive modeling (GAM) - to predict online student performance based on six personal characteristics. These characteristics are: communication aptitude, desire to learn, escapism, hours studied, gender, and English as a Second Language. Survey data from 168 students were partitioned into training/validation sets and the best fit models from the training data were tested on the validation data. While the regression method outdid the GAM at predicting student performance overall, the GAM explained the performance behavior better over various predictor intervals using natural splines. The study confirms the usefulness of business analytics methods and presents implications for college administrators and faculty to optimize individual student online learning.

Suggested Citation

  • Siva Sankaran & Kris Sankaran, 2016. "Improving Online Course Performance Through Customization: An Empirical Study Using Business Analytics," International Journal of Business Analytics (IJBAN), IGI Global, vol. 3(4), pages 1-20, October.
  • Handle: RePEc:igg:jban00:v:3:y:2016:i:4:p:1-20
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJBAN.2016100101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jban00:v:3:y:2016:i:4:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.