Author
Listed:
- Nuru I. Sarkar
(Auckland University of Technology, New Zealand)
- Kashif Nisar
(Auckland University of Technology, New Zealand, and Universiti Utara Malaysia, Malaysia)
- Layangi Babbage
(Auckland University of Technology, New Zealand)
Abstract
The Advanced Network Technologies is research that investigates technology(s) behind today’s modern networks and network infrastructures. One part of this technology being Asynchronous Transfer Mode (ATM). A technology commonly in place in networks all around the world today. This paper focuses on ATM. Dubbed “Modelling and Performance Studies of ATM Networks”; this research seeks to look at and into the “impact of application segment length on the performance of an ATM network” and the “impact of traffic type data on the performance of an ATM network”. To be able to examine an ATM network, the authors need to be able to simulate a network. Thus, for this research, they have used the OPNET Modeler 14.0 Simulation software to create a network model that represents a ATM network. By actually simulating an ATM network at AUT University New Zealand, the authors can therefore change certain variables, and observe the effects the changes have on performance. As stated, one of the impacts that will be explored is the effect that application segment length has on an ATM network. Thus, one variable that will be changed in the authors’ simulation is the segment length. This is the length of each packet segment that is sent through the network for a particular traffic type. The second impact to be inspected is the impact of different traffic types on an ATM network. This network model is based on a campus network. An Application Configuration is setup with default parameters which specify 8 common applications used. Among them the ones that the authors will focus on are VOIP, Video and FTP. A Profile Configuration is setup that will define the 3 applications stated above. A fixed node model of 100BaseT will specify the profile configuration for each scenario and the number of work stations of each scenario.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:japuc0:v:4:y:2012:i:1:p:49-59. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.