IDEAS home Printed from https://ideas.repec.org/a/igg/jamc00/v9y2018i3p1-12.html
   My bibliography  Save this article

Advancing Malware Classification With an Evolving Clustering Method

Author

Listed:
  • Chia-Mei Chen

    (Department of Information Management, National Sun Yat-sen University, Kaohsiung, Taiwan)

  • Shi-Hao Wang

    (Department of Information Management, National Sun Yat-sen University, Kaohsiung, Taiwan)

Abstract

This article describes how honeypots and intrusion detection systems serve as major mechanisms for security administrators to collect a variety of sample viruses and malware for further analysis, classification, and system protection. However, increased variety and complexity of malware makes the analysis and classification challenging, especially when efficiency and timely response are two contradictory yet equally significant criteria in malware classification. Besides, similarity-based classifications exhibit insufficiency because the mutation and fuzzification of malware exacerbate classification difficulties. In order to improve malware classification speed and attend to mutation, this research proposes the ameliorated progressive classification that integrates static analysis and improved k-means algorithm. This proposed classification aims at assisting network administrators to have a malware classification preprocess and make efficient malware classifications upon the capture of new malware, thus enhancing the defense against malware.

Suggested Citation

  • Chia-Mei Chen & Shi-Hao Wang, 2018. "Advancing Malware Classification With an Evolving Clustering Method," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 9(3), pages 1-12, July.
  • Handle: RePEc:igg:jamc00:v:9:y:2018:i:3:p:1-12
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAMC.2018070101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jamc00:v:9:y:2018:i:3:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.