IDEAS home Printed from https://ideas.repec.org/a/igg/jamc00/v6y2015i1p1-22.html
   My bibliography  Save this article

Distributed Query Plan Generation using Ant Colony Optimization

Author

Listed:
  • T.V. Vijay Kumar

    (School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India)

  • Rahul Singh

    (School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India)

  • Amit Kumar

    (School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India)

Abstract

Query processing is a critical performance evaluation parameter and has received a considerable amount of attention especially in the context of distributed database systems. The aim of distributed query processing is to effectively and efficiently process the query. This entails laying down an optimal distributed query processing strategy that generates efficient query plans Since in distributed database systems, the data is distributed and replicated at multiple sites, the number of query plans increases exponentially with increase in the number of relations accessed by the query along with increase in the number of sites containing these relations. Thus, from amongst these query plans, there is a need to generate optimal query plans involving lesser number of sites which, in turn, would entail lower site-to-site communication cost leading to faster query response times. In this paper, an attempt has been made to generate such query plans for a distributed query using Ant Colony Optimization (ACO). This ACO based distributed query plan generation (DQPG) algorithm, when compared with the GA based DQPG algorithm, is able to generate comparatively better quality Top-K query plans for a given distributed query.

Suggested Citation

  • T.V. Vijay Kumar & Rahul Singh & Amit Kumar, 2015. "Distributed Query Plan Generation using Ant Colony Optimization," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 6(1), pages 1-22, January.
  • Handle: RePEc:igg:jamc00:v:6:y:2015:i:1:p:1-22
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijamc.2015010101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jamc00:v:6:y:2015:i:1:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.