IDEAS home Printed from https://ideas.repec.org/a/igg/jamc00/v1y2010i3p1-19.html
   My bibliography  Save this article

Stochastic Learning for SAT- Encoded Graph Coloring Problems

Author

Listed:
  • Noureddine Bouhmala

    (Vestfold University College, Norway)

  • Ole-Christoffer Granmo

    (University of Agder, Norway)

Abstract

The graph coloring problem (GCP) is a widely studied combinatorial optimization problem due to its numerous applications in many areas, including time tabling, frequency assignment, and register allocation. The need for more efficient algorithms has led to the development of several GC solvers. In this paper, the authors introduce a team of Finite Learning Automata, combined with the random walk algorithm, using Boolean satisfiability encoding for the GCP. The authors present an experimental analysis of the new algorithm’s performance compared to the random walk technique, using a benchmark set containing SAT-encoding graph coloring test sets.

Suggested Citation

  • Noureddine Bouhmala & Ole-Christoffer Granmo, 2010. "Stochastic Learning for SAT- Encoded Graph Coloring Problems," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 1(3), pages 1-19, July.
  • Handle: RePEc:igg:jamc00:v:1:y:2010:i:3:p:1-19
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jamc.2010070101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jamc00:v:1:y:2010:i:3:p:1-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.