IDEAS home Printed from https://ideas.repec.org/a/igg/jamc00/v1y2010i2p1-17.html
   My bibliography  Save this article

Metaheuristic Search with Inequalities and Target Objectives for Mixed Binary Optimization – Part II: Exploiting Reaction and Resistance

Author

Listed:
  • Fred Glover

    (OptTek Systems, Inc., USA)

  • Saïd Hanafi

    (University of Lille -Nord de France, UVHC, and LAMIH, France)

Abstract

Recent metaheuristics for mixed integer programming have included proposals for introducing inequalities and target objectives to guide this search. These guidance approaches are useful in intensification and diversification strategies related to fixing subsets of variables at particular values. The authors’ preceding Part I study demonstrated how to improve such approaches by new inequalities that dominate those previously proposed. In Part II, the authors review the fundamental concepts underlying weighted pseudo cuts for generating guiding inequalities, including the use of target objective strategies. Building on these foundations, this paper develops a more advanced approach for generating the target objective based on exploiting the mutually reinforcing notions of reaction and resistance. The authors demonstrate how to produce new inequalities by “mining” reference sets of elite solutions to extract characteristics these solutions exhibit in common. Additionally, a model embedded memory is integrated to provide a range of recency and frequency memory structures for achieving goals associated with short term and long term solution strategies. Finally, supplementary linear programming models that exploit the new inequalities for intensification and diversification are proposed.

Suggested Citation

  • Fred Glover & Saïd Hanafi, 2010. "Metaheuristic Search with Inequalities and Target Objectives for Mixed Binary Optimization – Part II: Exploiting Reaction and Resistance," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 1(2), pages 1-17, April.
  • Handle: RePEc:igg:jamc00:v:1:y:2010:i:2:p:1-17
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jamc.2010040101
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Peng-Yeng & Wu, Tsai-Hung & Hsu, Ping-Yi, 2017. "Risk management of wind farm micro-siting using an enhanced genetic algorithm with simulation optimization," Renewable Energy, Elsevier, vol. 107(C), pages 508-521.
    2. Yin, Peng-Yeng & Wu, Tsai-Hung & Hsu, Ping-Yi, 2017. "Simulation based risk management for multi-objective optimal wind turbine placement using MOEA/D," Energy, Elsevier, vol. 141(C), pages 579-597.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jamc00:v:1:y:2010:i:2:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.