IDEAS home Printed from https://ideas.repec.org/a/igg/jamc00/v13y2022i1p1-25.html
   My bibliography  Save this article

A Radial Estimation-of-Distribution Algorithm for the Job-Shop Scheduling Problem

Author

Listed:
  • Ricardo Pérez-Rodríguez

    (National Council for Science and Technology, Mexico & Autonomous University of Queretaro, Mexico)

Abstract

The job-shop environment has been widely studied under different approaches. It is due to its practical characteristic that makes its research interesting. Therefore, the job-shop scheduling problem continues being attracted to develop new evolutionary algorithms. In this paper, we propose a new estimation of distribution algorithm coupled with a radial probability function. The aforementioned radial function comes from the hydrogen element. This approach is proposed in order to build a competitive evolutionary algorithm for the job-shop scheduling problem. The key point is to exploit the radial probability distribution to construct offspring, and to tackle the inconvenient of the EDAs, i.e., lack of diversity of the solutions and poor ability of exploitation. Various instances and numerical experiments are presented to illustrate, and to validate this novel research. The results, obtained from this research, permits to conclude that using radial probability distributions is an emerging field to develop new and efficient EDAs.

Suggested Citation

  • Ricardo Pérez-Rodríguez, 2022. "A Radial Estimation-of-Distribution Algorithm for the Job-Shop Scheduling Problem," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 13(1), pages 1-25, January.
  • Handle: RePEc:igg:jamc00:v:13:y:2022:i:1:p:1-25
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAMC.292519
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jamc00:v:13:y:2022:i:1:p:1-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.