IDEAS home Printed from https://ideas.repec.org/a/igg/jamc00/v12y2021i4p1-27.html
   My bibliography  Save this article

A Multi-Objective Anti-Predatory NIA for E-Commerce Logistics Optimization Problem

Author

Listed:
  • Rohit Kumar Sachan

    (Motilal Nehru National Institute of Technology, India)

  • Dharmender Singh Kushwaha

    (Motilal Nehru National Institute of Technology, India)

Abstract

Nature-inspired algorithms (NIAs) have established their promising performance to solve both single-objective optimization problems (SOOPs) and multi-objective optimization problems (MOOPs). Anti-predatory NIA (APNIA) is one of the recently introduced single-objective algorithm based on the self-defense behavior of frogs. This paper extends APNIA as multi-objective algorithm and presents the first proposal of APNIA to solve MOOPs. The proposed algorithm is a posteriori version of APNIA, which is named as multi-objective anti-predatory NIA (MO-APNIA). It uses the concept of Pareto dominance to determine the non-dominated solutions. The performance of the MO-APNIA is established through the experimental evaluation and statistically verified using the Friedman rank test and Holm-Sidak test. MO-APNIA is also employed to solve a multi-objective variant of hub location problem (HLP) from the perspective of the e-commerce logistics. Results indicate that the MO-APNIA is also capable to finds the non-dominated solutions of HLP. This finds immense use in logistics industry.

Suggested Citation

  • Rohit Kumar Sachan & Dharmender Singh Kushwaha, 2021. "A Multi-Objective Anti-Predatory NIA for E-Commerce Logistics Optimization Problem," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 12(4), pages 1-27, October.
  • Handle: RePEc:igg:jamc00:v:12:y:2021:i:4:p:1-27
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAMC.2021100101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jamc00:v:12:y:2021:i:4:p:1-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.