IDEAS home Printed from https://ideas.repec.org/a/igg/jamc00/v12y2021i1p20-40.html
   My bibliography  Save this article

Timetable Generation: Applying a Modified FP-Tree Algorithm on Mined Students' and Faculty Preferences

Author

Listed:
  • Fawzi Abdulaziz Albalooshi

    (University of Bahrain, Bahrain)

  • Safwan Mahmood Shatnawi

    (University of Bahrain, Bahrain)

Abstract

Evidence based on ongoing published research shows that timetabling has been a challenge for over two decades. There is a growing need in higher education for a learner-centered solution focused on individual preferences. In the authors' earlier published work, students' group assessment information was mined to determine individualized achievements and predict future performance. In this paper, they extend the work to present a solution that uses students' individualized achievements, expected future performance, and historical registration records to discover students' registration timing patterns, as well as the most appropriate courses for registration. Such information is then processed to build the most suitable timetable for each student in the following semester. Faculty members' time preferences are also predicted based on historical teaching time patterns and course teaching preferences. The authors propose a modified frequent pattern (FP)-tree algorithm to process the predicted information. This results in clustering students to solve the timetable problem based on the predicted courses for registration. Then, it divides the timetable problem into subproblems for resolution. This ensures that time will not conflict within the generated timetables while satisfying both the hard and soft constraints. Both students' and faculty members timetabling preferences are met (88.8% and 85%).

Suggested Citation

  • Fawzi Abdulaziz Albalooshi & Safwan Mahmood Shatnawi, 2021. "Timetable Generation: Applying a Modified FP-Tree Algorithm on Mined Students' and Faculty Preferences," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 12(1), pages 20-40, January.
  • Handle: RePEc:igg:jamc00:v:12:y:2021:i:1:p:20-40
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAMC.2021010102
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jamc00:v:12:y:2021:i:1:p:20-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.