IDEAS home Printed from https://ideas.repec.org/a/igg/jamc00/v12y2021i1p142-156.html
   My bibliography  Save this article

Short-Term Load Forecasting Using Hybrid Neural Network

Author

Listed:
  • Muhammad Nadeem

    (COMSATS University Islamabad, Wah Campus, Pakistan)

  • Muhammad Altaf

    (COMSATS University Islamabad, Wah Campus, Pakistan)

  • Ayaz Ahmad

    (COMSATS University Islamabad, Wah Campus, Pakistan)

Abstract

One of the important factors in generating low cost electrical power is the accurate forecasting of electricity consumption called load forecasting. The major objective of the load forecasting is to trim down the error between actual load and forecasted load. Due to the nonlinear nature of load forecasting and its dependency on multiple variables, the traditional forecasting methods are normally outperformed by artificial intelligence techniques. In this research paper, a robust short term load forecasting technique for one to seven days ahead is introduced based on particle swarm optimization (PSO) and Levenberg Marquardt (LM) neural network forecast model, where the PSO and LM algorithm are used for the training process of neural network. The proposed methods are tested to predict the load of the New England Power Pool region's grid and compared with the existing techniques using mean absolute percentage errors to analyze the performance of the proposed methods. Forecast results confirm that the proposed LM and PSO-based neural network schemes outperformed the existing techniques.

Suggested Citation

  • Muhammad Nadeem & Muhammad Altaf & Ayaz Ahmad, 2021. "Short-Term Load Forecasting Using Hybrid Neural Network," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 12(1), pages 142-156, January.
  • Handle: RePEc:igg:jamc00:v:12:y:2021:i:1:p:142-156
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAMC.2021010108
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jamc00:v:12:y:2021:i:1:p:142-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.