IDEAS home Printed from https://ideas.repec.org/a/igg/jagr00/v10y2019i4p11-27.html
   My bibliography  Save this article

Drought Estimation-and-Projection Using Standardized Supply-Demand-Water Index and Artificial Neural Networks for Upper Tana River Basin in Kenya

Author

Listed:
  • Raphael Muli Wambua

    (Egerton University Department of Agricultural Engineering, Nakuru, Kenya)

Abstract

Drought occurrence, frequency and severity in the Upper Tana River basin (UTaRB) have critically affected water resource systems. To minimize the undesirable effects of drought, there is a need to quantify and project the drought trend. In this research, the drought was estimated and projected using Standardized Supply-Demand-Water Index (SSDI) and an Artificial Neural Network (ANN). Field meteorological data was used in which interpolated was conducted using kriging interpolation technique within ArcGIS environment. The results indicate those moderate, severe and extreme droughts at varying magnitudes as detected by the SSDI during 1972-2010 at different meteorological stations, with SSDI values equal or less than -2.0. In a spatial domain, the areas in south-eastern parts of the UTaRB exhibit the highest drought severity. Time-series forecasts and projection show that the best networks for SSDI exhibit respective ANNs architecture. The projected extreme droughts (values less than -2.00) and abundant water availability (SSDI values ≥ 2.00) were estimated using Recursive Multi-Step Neural Networks (RMSNN). The findings can be integrated into planning the drought-mitigation-adaptation and early-warning systems in the UTaRB.

Suggested Citation

  • Raphael Muli Wambua, 2019. "Drought Estimation-and-Projection Using Standardized Supply-Demand-Water Index and Artificial Neural Networks for Upper Tana River Basin in Kenya," International Journal of Applied Geospatial Research (IJAGR), IGI Global, vol. 10(4), pages 11-27, October.
  • Handle: RePEc:igg:jagr00:v:10:y:2019:i:4:p:11-27
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAGR.2019100102
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyan Tang & Yongjiu Feng & Chen Gao & Zhenkun Lei & Shurui Chen & Rong Wang & Yanmin Jin & Xiaohua Tong, 2023. "Entropy-weight-based spatiotemporal drought assessment using MODIS products and Sentinel-1A images in Urumqi, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 387-408, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jagr00:v:10:y:2019:i:4:p:11-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.