IDEAS home Printed from https://ideas.repec.org/a/igg/jaeis0/v12y2021i4p1-13.html
   My bibliography  Save this article

Prediction of Soybean Price Trend via a Synthesis Method With Multistage Model

Author

Listed:
  • Zhiling Xu

    (Northeast Agricultural University, Harbin, China)

  • Hualing Deng

    (Northeast Agricultural University, Harbin, China)

  • Qiufeng Wu

    (Northeast Agricultural University, Harbin, China)

Abstract

Soybean is an important crop, so it is very important to forecast soybean price trend, which can stabilize the market. This paper presents a Synthesis Method with Multistage Model (SMwMM) in order to identify and forecast soybean price trend in China. In the previous work,Toeplitz Inverse Covariance-based Clustering(TICC) has been applied to cluster the prices of four variables. The research have found that there are four patterns in soybean market price, which could be explained by economic theory. This paper consider four patterns as market risk levels. Based on the clustering results, we used Long short-term memory(LSTM) to forecast the prices of these four variables. Multivariate long short-term memory(MLSTM) is then used to classify soybean price to determine level of risk . Experimental results show that :(1)The LSTM model has achieved great fitting effect and high prediction accuracy;(2) The performance of MLSTM-FCN and MALSTM-FCN is better than that of LSTM-FCN and ALSTM-FCN. Furthermore,MALSTM-FCN had the higher accuracy than MLSTM-FCN, which reached 76.39%.

Suggested Citation

  • Zhiling Xu & Hualing Deng & Qiufeng Wu, 2021. "Prediction of Soybean Price Trend via a Synthesis Method With Multistage Model," International Journal of Agricultural and Environmental Information Systems (IJAEIS), IGI Global, vol. 12(4), pages 1-13, October.
  • Handle: RePEc:igg:jaeis0:v:12:y:2021:i:4:p:1-13
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAEIS.20211001.oa1
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hua Ling Deng & Yǔ Qiàn Sūn, 2019. "Soybean Price Pattern Discovery Via Toeplitz Inverse Covariance-Based Clustering," International Journal of Agricultural and Environmental Information Systems (IJAEIS), IGI Global, vol. 10(4), pages 1-17, October.
    2. Krzysztof Drachal, 2019. "Analysis of Agricultural Commodities Prices with New Bayesian Model Combination Schemes," Sustainability, MDPI, vol. 11(19), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesus Crespo Cuaresma & Jaroslava Hlouskova & Michael Obersteiner, 2021. "Agricultural commodity price dynamics and their determinants: A comprehensive econometric approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1245-1273, November.
    2. Yan Guo & Xiaonan Hu & Zepeng Wang & Wei Tang & Deyu Liu & Yunzhong Luo & Hongxiang Xu, 2021. "The butterfly effect in the price of agricultural products: A multidimensional spatial-temporal association mining," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 67(11), pages 457-467.
    3. Tserenpurev Chuluunsaikhan & Ga-Ae Ryu & Kwan-Hee Yoo & HyungChul Rah & Aziz Nasridinov, 2020. "Incorporating Deep Learning and News Topic Modeling for Forecasting Pork Prices: The Case of South Korea," Agriculture, MDPI, vol. 10(11), pages 1-22, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jaeis0:v:12:y:2021:i:4:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.