IDEAS home Printed from https://ideas.repec.org/a/igg/jaeis0/v11y2020i4p1-24.html
   My bibliography  Save this article

An Intelligent Irrigation Scheduling and Monitoring System for Precision Agriculture Application

Author

Listed:
  • RajinderKumar Mallayya Math

    (Department of Electronics and Communication Engineering, B.L.D.E.A's V.P. Dr. P.G. Halakatti College of Engineering and Technology, Vijayapur, India & VTU-RRC, Belagavi, India)

  • Nagaraj V. Dharwadkar

    (Department of Computer Science and Engineering, Rajarambapu Institute of Technology, Uran Islampur, India)

Abstract

In spite of technological advancements, the farm productivity of Indian agriculture is still on the lower side. The underlying reason for poor farm productivity in India is due to the inefficient usage of agricultural inputs, resulting in low or poor-quality agricultural yields. Water happens to be one of such imperative agricultural input that has a huge impact on agricultural productivity. Precision agriculture systems can take care of irrigation requirements by optimally and efficiently using irrigation water for producing crops having superior quality and quantity. This work proposes a smart irrigation system that can efficiently manage the water requirements of the crop for its optimal growth. The irrigation schedules are developed using a feed forward neural network model that can predict the variation in the soil moisture considering the environmental factors such as temperature, humidity, atmospheric pressure, and the rain. The results indicate the effectiveness of the developed system in predicting the soil moisture with mean square error as low as 0.13 and the R value as high as 0.98.

Suggested Citation

  • RajinderKumar Mallayya Math & Nagaraj V. Dharwadkar, 2020. "An Intelligent Irrigation Scheduling and Monitoring System for Precision Agriculture Application," International Journal of Agricultural and Environmental Information Systems (IJAEIS), IGI Global, vol. 11(4), pages 1-24, October.
  • Handle: RePEc:igg:jaeis0:v:11:y:2020:i:4:p:1-24
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAEIS.2020100101
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Abdollahi & Karim Rejeb & Abderahman Rejeb & Mohamed M. Mostafa & Suhaiza Zailani, 2021. "Wireless Sensor Networks in Agriculture: Insights from Bibliometric Analysis," Sustainability, MDPI, vol. 13(21), pages 1-22, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jaeis0:v:11:y:2020:i:4:p:1-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.