Author
Listed:
- Shiv Prakash
(School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India)
- Deo Prakash Vidyarthi
(School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India)
Abstract
Scheduling in Computational Grid (CG) is an important but complex task. It is done to schedule the submitted jobs onto the nodes of the grid so that some characteristic parameter is optimized. Makespan of the job is an important parameter and most often scheduling is done to optimize makespan. Genetic Algorithm (GA) is a search procedure based on the evolutionary technique that is able to solve a class of complex optimization problem. However, GA takes longer to converge towards its near optimal solution. Bacteria Foraging Optimization (BFO), also derived from nature, is a technique to optimize a given function in a distributed manner. Due to limited availability of bacteria, BFO is not suitable to optimize the solution for the problem involving a large search space. Characteristics of both GA and BFO are combined so that their benefits can be reaped. The hybrid approach is referred to as Genetic Algorithms Bacteria Foraging Optimization (GABFO) algorithm. The proposed GABFO has been applied to optimize makespan of a given schedule in a computational grid. Results of the simulation, conducted to evaluate the performance of the proposed model, reveal the effectiveness of the proposed model.
Suggested Citation
Shiv Prakash & Deo Prakash Vidyarthi, 2014.
"A Hybrid GABFO Scheduling for Optimal Makespan in Computational Grid,"
International Journal of Applied Evolutionary Computation (IJAEC), IGI Global, vol. 5(3), pages 57-83, July.
Handle:
RePEc:igg:jaec00:v:5:y:2014:i:3:p:57-83
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jaec00:v:5:y:2014:i:3:p:57-83. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.