IDEAS home Printed from https://ideas.repec.org/a/igg/jaec00/v3y2012i2p1-18.html
   My bibliography  Save this article

A New Multiple Objective Evolutionary Algorithm for Reliability Optimization of Series-Parallel Systems

Author

Listed:
  • Heidi A. Taboada

    (The University of Texas at El Paso, USA)

  • David W. Coit

    (Rutgers, The State University of New Jersey, USA)

Abstract

A new multiple objective evolutionary algorithm is proposed for reliability optimization of series-parallel systems. This algorithm uses a genetic algorithm based on rank selection and elitist reinsertion and a modified constraint handling method. Because genetic algorithms are appropriate for high-dimensional stochastic problems with many nonlinearities or discontinuities, they are suited for solving reliability design problems. The developed algorithm mainly differs from other multiple objective evolutionary algorithms in the crossover operation performed and in the fitness assignment. In the crossover step, several offspring are created through multi-parent recombination. Thus, the mating pool contains a great amount of diverse solutions. The disruptive nature of the proposed type of crossover, called subsystem rotation crossover, encourages the exploration of the search space. The paper presents a multiple objective formulation of the redundancy allocation problem. The three objective functions that are simultaneously optimized are the maximization of system reliability, the minimization of system cost, and the minimization of system weight. The proposed algorithm was thoroughly tested and a performance comparison of the proposed algorithm against one well-known multiple objective evolutionary algorithms that currently exists shows that the algorithm has a better performance when solving multiple objective redundant allocation problems.

Suggested Citation

  • Heidi A. Taboada & David W. Coit, 2012. "A New Multiple Objective Evolutionary Algorithm for Reliability Optimization of Series-Parallel Systems," International Journal of Applied Evolutionary Computation (IJAEC), IGI Global, vol. 3(2), pages 1-18, April.
  • Handle: RePEc:igg:jaec00:v:3:y:2012:i:2:p:1-18
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jaec.2012040101
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Dingzhou & Murat, Alper & Chinnam, Ratna Babu, 2013. "Efficient exact optimization of multi-objective redundancy allocation problems in series-parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 154-163.
    2. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
    3. Ali Salmasnia & Sadegh Noori & Hadi Mokhtari, 2019. "A redundancy allocation problem by using utility function method and ant colony optimization: tradeoff between availability and total cost," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 416-428, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jaec00:v:3:y:2012:i:2:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.