IDEAS home Printed from https://ideas.repec.org/a/igg/jaci00/v8y2017i2p32-51.html
   My bibliography  Save this article

A Comparative Study of Statistical and Rough Computing Models in Predictive Data Analysis

Author

Listed:
  • Debi Acharjya

    (School of Computing Science and Engineering, VIT University, Vellore, India)

  • A. Anitha

    (School of Information Technology and Engineering, VIT University, Vellore, India)

Abstract

Information and technology revolution has brought a radical change in the way data are collected. The data collected is of no use unless some useful information is derived from it. Therefore, it is essential to think of some predictive analysis for analyzing data and to get meaningful information. Much research has been carried out in the direction of predictive data analysis starting from statistical techniques to intelligent computing techniques and further to hybridize computing techniques. The prime objective of this paper is to make a comparative analysis between statistical, rough computing, and hybridized techniques. The comparative analysis is carried out over financial bankruptcy data set of Greek industrial bank ETEVA. It is concluded that rough computing techniques provide better accuracy 88.2% as compared to statistical techniques whereas hybridized computing techniques provides still better accuracy 94.1% as compared to rough computing techniques.

Suggested Citation

  • Debi Acharjya & A. Anitha, 2017. "A Comparative Study of Statistical and Rough Computing Models in Predictive Data Analysis," International Journal of Ambient Computing and Intelligence (IJACI), IGI Global, vol. 8(2), pages 32-51, April.
  • Handle: RePEc:igg:jaci00:v:8:y:2017:i:2:p:32-51
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJACI.2017040103
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soumi Majumder & Debasish Biswas, 2023. "A Bibliometric and Co-Occurrence Analysis of Work-Life Balance: Related Literature Published Pre- and During COVID-19 Pandemic," International Journal of Information Systems and Supply Chain Management (IJISSCM), IGI Global, vol. 16(1), pages 1-11, January.
    2. Sankhadeep Chatterjee & Sarbartha Sarkar & Nilanjan Dey & Soumya Sen, 2018. "Non-Dominated Sorting Genetic Algorithm-II-Induced Neural-Supported Prediction of Water Quality with Stability Analysis," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 17(02), pages 1-20, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jaci00:v:8:y:2017:i:2:p:32-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.