Author
Listed:
- Debasmita GhoshRoy
(Banasthali Vidyapith, India)
- P. A. Alvi
(Banasthali Vidyapith, India)
- João Manuel R. S. Tavares
(Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Portugal)
Abstract
Cardiovascular diseases are a cluster of heart-related issues, including many comorbidities, which are becoming a leading cause of human death across the globe. Hence, an essential framework is demanded for the early detection of CVDs which can help to prevent premature death. The application of Artificial Intelligence (AI) in healthcare has opted for this challenge and makes it easier to detect CVDs using a computational model. In this study, the authors built a reduced dataset using ensemble feature selection methods and got five features as per their weight values. Support Vector Machine, Logistic Regression, and Decision Tree classification techniques are utilized to check the effectiveness of newly designed datasets through different validation approaches. The authors also worked on data processing and visualization techniques, including Principal Component Analysis (PCA), and T-sne for understanding the data structure. From the findings, it was possible to conclude that DT has achieved an optimal accuracy and AUC of 98.9% and 0.99 ROC with leave one out Cross Validation (CV).
Suggested Citation
Debasmita GhoshRoy & P. A. Alvi & João Manuel R. S. Tavares, 2022.
"Detection of Cardiovascular Disease Using Ensemble Feature Engineering With Decision Tree,"
International Journal of Ambient Computing and Intelligence (IJACI), IGI Global, vol. 13(1), pages 1-16, January.
Handle:
RePEc:igg:jaci00:v:13:y:2022:i:1:p:1-16
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jaci00:v:13:y:2022:i:1:p:1-16. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.