IDEAS home Printed from https://ideas.repec.org/a/igg/jaci00/v11y2020i3p1-21.html
   My bibliography  Save this article

Human Identification System Based on Spatial and Temporal Features in the Video Surveillance System

Author

Listed:
  • Sanjeevkumar Angadi

    (Department of Computer Science and Engineering, MIT College of Railway Engineering and Research, Barshi, India & Punyashlok Ahilyadevi Holkar Solapur University, Solapur, India)

  • Suvarna Nandyal

    (Department of Computer Science and Engineering, Poojya Doddappa Appa College of Engineering, Kalaburagi, India & Visvesvaraya Technological University, Belgavi, India)

Abstract

Human identification is the most significant topic in the bioinformatics field. Various human gait identification methods are available to identify humans, but detecting the objects based on the human gait is still a challenging task in the video surveillance system. Thus, an effective hybrid Bayesian approach is proposed for identifying the humans. The proposed hybrid Bayesian approach involves two stages as follows: the first stage is the human identification based on the object features, and the second stage is the human identification based on the spatial features. Initially, the videos are fed into the first stage, where the object detection is performed using the Viola Jones algorithm. Once the objects are detected, the feature extraction process is carried out by using a hierarchical skeleton to effectively extract the selective features. The object skeleton provides an effective and intuitive abstraction, which offers object recognition and object matching. The Bayesian network is adapted in the object-based features to identify humans. In the spatial-based human identification stage, only the spatial features are extracted and are passed into the gait-based Bayesian network to identify the humans. Finally, the resulted output is obtained using the fuzzy holoentropy for identifying the humans. The experimentation of the proposed hybrid Bayesian approach is performed using the dataset named UCF-Crime, and the performance is evaluated by considering the average value of the metrics, namely F1-score, precision, and recall which acquired 0.8820, 0.8770, and 0.9203, respectively.

Suggested Citation

  • Sanjeevkumar Angadi & Suvarna Nandyal, 2020. "Human Identification System Based on Spatial and Temporal Features in the Video Surveillance System," International Journal of Ambient Computing and Intelligence (IJACI), IGI Global, vol. 11(3), pages 1-21, July.
  • Handle: RePEc:igg:jaci00:v:11:y:2020:i:3:p:1-21
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJACI.2020070101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jaci00:v:11:y:2020:i:3:p:1-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.