IDEAS home Printed from https://ideas.repec.org/a/ier/iecrev/v20y1979i2p459-64.html
   My bibliography  Save this article

Maximum Likelihood Estimation of Singular Equation Systems with Autoregressive Disturbances

Author

Listed:
  • Beach, Charles M
  • MacKinnon, James G

Abstract

Maximum likelihood estimation of equation systems with first-order autocorrelation should, in principle, take into account the first observation and associated stationarity condition. In the general case, this leads to computational difficulties compared with conventional procedures, which perhaps explains the failure of the latter to incorporate the initial observation. However, in a special case where the autoregressive process has only one parameter, which is widely used for single equation systems such as demand systems, taking the first observation into account is no more difficult than ignoring it. The paper presents empirical results of estimating a demand system with Canadian data which suggest that maximizing the full likelihood function can yield very different and more reasonable estimates than maximizing the conventional one.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Beach, Charles M & MacKinnon, James G, 1979. "Maximum Likelihood Estimation of Singular Equation Systems with Autoregressive Disturbances," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 20(2), pages 459-464, June.
  • Handle: RePEc:ier:iecrev:v:20:y:1979:i:2:p:459-64
    as

    Download full text from publisher

    File URL: http://links.jstor.org/sici?sici=0020-6598%28197906%2920%3A2%3C459%3AMLEOSE%3E2.0.CO%3B2-J&origin=repec
    File Function: full text
    Download Restriction: Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ier:iecrev:v:20:y:1979:i:2:p:459-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.