IDEAS home Printed from https://ideas.repec.org/a/ier/iecrev/v17y1976i1p121-32.html
   My bibliography  Save this article

Unbounded Shadow Prices for Optimal Stochastic Growth Models

Author

Listed:
  • Mirman, Leonard J
  • Zilcha, Itzhak

Abstract

No abstract is available for this item.

Suggested Citation

  • Mirman, Leonard J & Zilcha, Itzhak, 1976. "Unbounded Shadow Prices for Optimal Stochastic Growth Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(1), pages 121-132, February.
  • Handle: RePEc:ier:iecrev:v:17:y:1976:i:1:p:121-32
    as

    Download full text from publisher

    File URL: http://links.jstor.org/sici?sici=0020-6598%28197602%2917%3A1%3C121%3AUSPFOS%3E2.0.CO%3B2-6&origin=repec
    File Function: full text
    Download Restriction: Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nævdal, Eric, 2016. "Catastrophes and ex post shadow prices—How the value of the last fish in a lake is infinity and why we should not care (much)," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 153-160.
    2. Lars J. Olson & Santanu Roy, 2006. "Theory of Stochastic Optimal Economic Growth," Springer Books, in: Rose-Anne Dana & Cuong Le Van & Tapan Mitra & Kazuo Nishimura (ed.), Handbook on Optimal Growth 1, chapter 11, pages 297-335, Springer.
    3. Mitra, Tapan & Roy, Santanu, 2012. "Sustained positive consumption in a model of stochastic growth: The role of risk aversion," Journal of Economic Theory, Elsevier, vol. 147(2), pages 850-880.
    4. Tapan Mitra & Santanu Roy, 2023. "Stochastic growth, conservation of capital and convergence to a positive steady state," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(1), pages 311-351, July.
    5. Tapan Mitra & Santanu Roy, 2006. "Optimal exploitation of renewable resources under uncertainty and the extinction of species," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(1), pages 1-23, May.
    6. Fabio Privileggi, 1995. "A characterization for solutions of stochastic discrete time optimization models," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 18(2), pages 165-180, September.
    7. Mitra, Tapan & Privileggi, Fabio, 2009. "On Lipschitz continuity of the iterated function system in a stochastic optimal growth model," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 185-198, January.
    8. Olson, Lars J. & Roy, Santanu, 2000. "Dynamic Efficiency of Conservation of Renewable Resources under Uncertainty," Journal of Economic Theory, Elsevier, vol. 95(2), pages 186-214, December.
    9. Nævdal, Eric, 2015. "Catastrophes and Expected Marginal Utility – How The Value Of The Last Fish In A Lake Is Infinity And Why We Shouldn't Care (Much)," Memorandum 08/2015, Oslo University, Department of Economics.
    10. Chatterjee, Partha & Shukayev, Malik, 2008. "Note on positive lower bound of capital in the stochastic growth model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(7), pages 2137-2147, July.
    11. Amir, Rabah, 1997. "A new look at optimal growth under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 22(1), pages 67-86, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ier:iecrev:v:17:y:1976:i:1:p:121-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.