Author
Listed:
- José M. Vargas
(Universidad Nacional de Córdoba, Facultad de Ciencias Económicas (Córdoba, Argentina))
- Margarita Díaz
(Universidad Nacional de Córdoba, Facultad de Ciencias Económicas (Córdoba, Argentina))
- Fernando García
(Universidad Nacional de Córdoba, Facultad de Ciencias Económicas (Córdoba, Argentina))
Abstract
The purpose of this paper is to classify and characterize 64 banks, active as of 2010 in Argentina, by means of robust techniques used on information gathered during the period 2001-2010. Based on the strategy criteria established in (Wang 2007) and (Werbin 2010), seven variables were selected. In agreement with bank theory, four “natural” clusters were obtained, named “Personal”, “Commercial”, “Typical” and “Other banks”. In order to understand this grouping, projection pursuit based robust principal component analysis was conducted on the whole set showing that essentially three variables can be attributed the formation of different clusters. In order to reveal each group inner structure, we used R package mclust to fit a finite Gaussian mixture to the data. This revealed approximately a similar component structure, granting a common principal components analysis as in (Boente and Rodrigues, 2002). This allowed us to identify three variables which suffice for grouping and characterizing each cluster. Boente’s influence measures were used to detect extreme cases in the common principal components analysis./ El propósito de este documento es clasificar y caracterizar 64 bancos, activos en 2010 en la Argentina, mediante técnicas robustas utilizadas con información para el período 2001-2010. En base a los criterios de estrategia establecidos en (Wang 2007) y (Werbin 2010), se seleccionaron siete variables. De acuerdo con la teoría bancaria, se obtuvieron cuatro conglomerados "naturales", denominados "Personal", "Comercial", "Típico" y "Otros bancos". Para comprender este agrupamiento, se utilizó el todo el conjunto de banco y se realizó un análisis de los componentes principales basado en la proyección, que mostró que esencialmente tres variables pueden atribuirse a la formación de diferentes agrupaciones. A fin de revelar la estructura interna de cada grupo, utilizamos el paquete R mclust para ajustar una mezcla gaussiana finita a los datos. Esto reveló aproximadamente una estructura de componentes similar, lo que garantiza un análisis de componentes principales comunes como en (Boente y Rodrigues, 2002). Esto nos permitió identificar tres variables que son suficientes para agrupar y caracterizar cada cluster. Las medidas de influencia de Boente se utilizaron para detectar casos extremos en el análisis de componentes principales comunes.
Suggested Citation
José M. Vargas & Margarita Díaz & Fernando García, 2018.
"Robust Clustering of Banks in Argentina,"
Revista de Economía y Estadística, Universidad Nacional de Córdoba, Facultad de Ciencias Económicas, Instituto de Economía y Finanzas, vol. 56(1), pages 21-41, Diciembre.
Handle:
RePEc:ief:reveye:v:56:y:2018:i:1:p:21-41
DOI: 10.55444/2451.7321.2018.v56.n1.29385
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ief:reveye:v:56:y:2018:i:1:p:21-41. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivan Iturralde (email available below). General contact details of provider: https://edirc.repec.org/data/ieuncar.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.