IDEAS home Printed from https://ideas.repec.org/a/ids/injdan/v9y2017i3p248-282.html
   My bibliography  Save this article

Recurrent neural networks to model input-output relationships of metal inert gas (MIG) welding process

Author

Listed:
  • Geet Lahoti
  • Dilip Kumar Pratihar

Abstract

The mechanical strength of weld-bead is dependent on its geometric parameters like bead height, width and penetration, which depend on input process parameters, namely welding speed, arc voltage, wire feed rate, gas flow rate, nozzle-to-plate distance, torch angle etc. Recurrent neural networks were used for conducting both forward and reverse mappings using three approaches. The first approach dealt with the training of Elman network through updating its connecting weights using a back-propagation algorithm. In second approach, a real-coded genetic algorithm was used along with the back-propagation algorithm to tune the network. The third approach utilised a real-coded genetic algorithm only to optimise the network. In forward mapping, third approach was found to outperform the others, but in reverse mapping, first and second approaches were seen to perform better than the third one. The performances of these approaches were found to be data dependent.

Suggested Citation

  • Geet Lahoti & Dilip Kumar Pratihar, 2017. "Recurrent neural networks to model input-output relationships of metal inert gas (MIG) welding process," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 9(3), pages 248-282.
  • Handle: RePEc:ids:injdan:v:9:y:2017:i:3:p:248-282
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=86629
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jasleen Kaur & Khushdeep Dharni, 2022. "Application and performance of data mining techniques in stock market: A review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 219-241, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:injdan:v:9:y:2017:i:3:p:248-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=282 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.