IDEAS home Printed from https://ideas.repec.org/a/ids/injdan/v9y2017i1p17-33.html
   My bibliography  Save this article

Data quality improvement in data warehouse: a framework

Author

Listed:
  • Rajiv Arora
  • Payal Pahwa
  • Daya Gupta

Abstract

Data cleansing is an extremely imperative process which when carried out on the datasets, eliminates the inconsistency and duplicity from the data. It also handles null values or missing values in the data in an organised and proper manner thereby enhancing the quality of the data. In this paper, we use Kullback-Leibler divergence (KL-divergence) technique to eliminate duplicity in the datasets. Inconsistency, null values or missing values are also handled in the datasets. This is done by maintaining data marts which are made on the basis of test data. Accordingly, a framework for efficient data cleansing is suggested in order to make the data appropriate and proper for decision making purpose. A brief comparison of existing approaches of data cleansing have also been discussed. This comparison is based on various parameters such as prediction error, bias, mean square error, variance, mean absolute error, root mean square error, Theil statistics etc. These parameters are used by distance sum-based approach (DSA) to accomplish the task. The results obtained demonstrate the feasibility and validity of our method.

Suggested Citation

  • Rajiv Arora & Payal Pahwa & Daya Gupta, 2017. "Data quality improvement in data warehouse: a framework," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 9(1), pages 17-33.
  • Handle: RePEc:ids:injdan:v:9:y:2017:i:1:p:17-33
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=83062
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Liu & Gengzhong Feng & Giri Kumar Tayi & Jun Tian, 2021. "Managing Data Quality of the Data Warehouse: A Chance-Constrained Programming Approach," Information Systems Frontiers, Springer, vol. 23(2), pages 375-389, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:injdan:v:9:y:2017:i:1:p:17-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=282 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.