IDEAS home Printed from https://ideas.repec.org/a/ids/injdan/v4y2012i4p398-427.html
   My bibliography  Save this article

Comparative study of stock market forecasting using different functional link artificial neural networks

Author

Listed:
  • Dwiti Krishna Bebarta
  • Birendra Biswal
  • P.K. Dash

Abstract

This paper presents different forecasting functional link artificial neural network (FLANN) models to investigate and compare various time series stock data. The architecture of several FLANN models like CFLANN, LFLANN, LeF-LANN, and CEFLANN are discussed. The processing technique and experimental results are provided to investigate the prediction of stocks. This piece of work presents the training and testing of all the models by analysing and forecasting different Indian stocks like IBM, RIL and DWSG. All the forecasting models have been tested using same duration time of time series data. The experimental results illustrate that the trigonometric polynomial-based CEFLANN model outperforms the forecasting time series stock data in terms of percentage average error than the polynomial-based FLANN models. Lastly, the percentage of average error is further improved by optimising the free parameters of the trigonometric polynomial-based CEFLANN model with differential evolution algorithm (DEA).

Suggested Citation

  • Dwiti Krishna Bebarta & Birendra Biswal & P.K. Dash, 2012. "Comparative study of stock market forecasting using different functional link artificial neural networks," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 4(4), pages 398-427.
  • Handle: RePEc:ids:injdan:v:4:y:2012:i:4:p:398-427
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=50407
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manel Hamdi & Chaker Aloui & Santosh kumar Nanda, 2016. "Comparing Functional Link Artificial Neural Network And Multilayer Feedforward Neural Network Model To Forecast Crude Oil Prices," Economics Bulletin, AccessEcon, vol. 36(4), pages 2430-2442.
    2. Manolis Maragoudakis & Dimitrios Serpanos, 2016. "Exploiting Financial News and Social Media Opinions for Stock Market Analysis using MCMC Bayesian Inference," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 589-622, April.
    3. Jasleen Kaur & Khushdeep Dharni, 2022. "Application and performance of data mining techniques in stock market: A review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 219-241, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:injdan:v:4:y:2012:i:4:p:398-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=282 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.