IDEAS home Printed from https://ideas.repec.org/a/ids/injdan/v3y2011i3p261-280.html
   My bibliography  Save this article

Bacterial foraging trained wavelet neural networks: application to bankruptcy prediction in banks

Author

Listed:
  • Paramjeet
  • V. Ravi

Abstract

This paper proposes a modified bacterial foraging technique (BFT) to train wavelet neural network (WNN) in order to predict bankruptcy in banks. The BFT is modified in that the swarming step that implements cell-to-cell interaction is deleted. The parameters translation, dilation and the weights connecting different layers in WNN are updated using the BFT. The resulting neural network is called BFTWNN. The effectiveness of BFTWNN is tested on bankruptcy prediction as well as benchmark datasets. We employed ten-fold cross validation in the study. Numerical experiments suggested that the BFTWNN outperformed threshold accepting trained wavelet neural network (TAWNN) (Vinaykumar et al., 2008) and WNN in benchmark datasets by wide margin while it yielded results comparable to that of differential evolution wavelet neural network (DEWNN) (Chauhan et al., 2009) in terms of area under the receiver-operating characteristic curve (AUC). Of particular significance is the superiority of the BFTWNN over the original WNN on all but one datasets.

Suggested Citation

  • Paramjeet & V. Ravi, 2011. "Bacterial foraging trained wavelet neural networks: application to bankruptcy prediction in banks," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 3(3), pages 261-280.
  • Handle: RePEc:ids:injdan:v:3:y:2011:i:3:p:261-280
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=41334
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jasleen Kaur & Khushdeep Dharni, 2022. "Application and performance of data mining techniques in stock market: A review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 219-241, October.
    2. J. Uthayakumar & Noura Metawa & K. Shankar & S. K. Lakshmanaprabu, 2020. "RETRACTED ARTICLE: Intelligent hybrid model for financial crisis prediction using machine learning techniques," Information Systems and e-Business Management, Springer, vol. 18(4), pages 617-645, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:injdan:v:3:y:2011:i:3:p:261-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=282 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.