IDEAS home Printed from https://ideas.repec.org/a/ids/injbaf/v10y2019i1p67-100.html
   My bibliography  Save this article

Forecasting the daily dynamic hedge ratios in emerging European stock futures markets: evidence from GARCH models

Author

Listed:
  • Taufiq Choudhry
  • Mohammad Hasan
  • Yuanyuan Zhang

Abstract

This paper empirically estimates and forecasts the hedge ratios of three emerging European and one developed stock futures markets by means of seven different versions of GARCH model. The seven GARCH models applied are bivariate GARCH, GARCH-ECM, BEKK GARCH, GARCH-DCC, GARCH-X, GARCH-GJR and GARCH-JUMP. Daily data during January 2000-July 2014 from Greece, Hungary, Poland and the UK are applied. Forecast errors based on these four stock futures portfolio return forecasts (based on forecasted hedge ratios) are employed to evaluate out-of-sample forecasting ability of the seven GARCH models. The comparison is done by means of model confidence set (MCS) and modified Diebold-Mariano tests. Forecasts are conducted over two non-overlapping out-of-sample periods, a two-year period and a one-year period. MCS results indicate that the GARCH model provides the most accurate forecasts in five cases, while each of the GARCH-ECM, GARCH-X and GARCH-GJR models constitutes model confidence set in four cases at a reasonable confidence level. Models selection based on modified Diebold-Mariano tests further corroborate results of the MCS tests. Differences between the portfolio returns also indicate the high forecasting ability of GARCH-BEKK and GARCH-GJR models.

Suggested Citation

  • Taufiq Choudhry & Mohammad Hasan & Yuanyuan Zhang, 2019. "Forecasting the daily dynamic hedge ratios in emerging European stock futures markets: evidence from GARCH models," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 10(1), pages 67-100.
  • Handle: RePEc:ids:injbaf:v:10:y:2019:i:1:p:67-100
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=99316
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boyue Fang & Yutong Feng, 2019. "Design of High-Frequency Trading Algorithm Based on Machine Learning," Papers 1912.10343, arXiv.org.
    2. Guo, Yangli & Li, Pan & Wu, Hanlin, 2023. "Jumps in the Chinese crude oil futures volatility forecasting: New evidence," Energy Economics, Elsevier, vol. 126(C).
    3. Guo, Yangli & He, Feng & Liang, Chao & Ma, Feng, 2022. "Oil price volatility predictability: New evidence from a scaled PCA approach," Energy Economics, Elsevier, vol. 105(C).
    4. Nurhuda Nizar & Ahmad Danial Zainudin & Ali Albada & Chua Mei Shan, 2024. "Forecasting Short-Term FTSE Bursa Malaysia Using WEKA," Information Management and Business Review, AMH International, vol. 16(2), pages 104-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:injbaf:v:10:y:2019:i:1:p:67-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=277 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.