IDEAS home Printed from https://ideas.repec.org/a/ids/ijscom/v1y2013i1p5-24.html
   My bibliography  Save this article

Modelling abrupt changes: enhanced learning of behaviour models for manufacturing systems

Author

Listed:
  • Asmir VodenÄ arević

Abstract

Modern manufacturing systems are complex technical systems that exhibit state-based, continuous, timed, and probabilistic behaviour. Modelling such systems is becoming increasingly hard, and yet their behaviour models are today mostly created manually. This paper gives an asset to learning these models automatically from data. The HyBUTLA algorithm for learning the hybrid automata models, which can represent manufacturing system's characteristics, has been recently proposed. However, it could not model the abrupt changes in the continuous part of the system. The contribution of this paper is as follows: the split function that detects and models abrupt changes is presented; both sufficient and necessary conditions for its success are formally proven; the complete HyBUTLA algorithm enhanced with the split function is given; experimental results conducted in a real manufacturing system are presented.

Suggested Citation

  • Asmir VodenÄ arević, 2013. "Modelling abrupt changes: enhanced learning of behaviour models for manufacturing systems," International Journal of Service and Computing Oriented Manufacturing, Inderscience Enterprises Ltd, vol. 1(1), pages 5-24.
  • Handle: RePEc:ids:ijscom:v:1:y:2013:i:1:p:5-24
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=52232
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijscom:v:1:y:2013:i:1:p:5-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=376 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.