IDEAS home Printed from https://ideas.repec.org/a/ids/ijrsaf/v4y2010i2-3p166-187.html
   My bibliography  Save this article

Reliability estimation using univariate dimension reduction and extended generalised lambda distribution

Author

Listed:
  • Erdem Acar
  • Masoud Rais-Rohani
  • Christopher D. Eamon

Abstract

This paper presents an analytical approach for structural reliability analysis without requiring the calculation of most probable point of failure. Initially, the primary statistical moments of a multi-dimensional performance function are estimated using the Univariate Dimension-Reduction (UDR) methodology based on additive decomposition of the limit state function. Through moment matching, the UDR-based estimated moments are then used to fit the parameters of Extended Generalised Lambda Distribution (EGLD), and finally the probability of failure is calculated. To evaluate the accuracy and efficiency of the UDR + EGLD approach in comparison to the traditional First-Order Reliability Method (FORM) and direct Monte Carlo Simulation (MCS), five example problems involving nonlinear limit state functions are examined. The results show that UDR + EGLD offers nearly the same level of accuracy as MCS with superior efficiency to FORM. However, UDR + EGLD appears to have tail sensitivity, which limits its application to problems with moderate levels of reliability.

Suggested Citation

  • Erdem Acar & Masoud Rais-Rohani & Christopher D. Eamon, 2010. "Reliability estimation using univariate dimension reduction and extended generalised lambda distribution," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 4(2/3), pages 166-187.
  • Handle: RePEc:ids:ijrsaf:v:4:y:2010:i:2/3:p:166-187
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=32444
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zihan & Daeipour, Mohamad & Xu, Hongyi, 2023. "Quantification and propagation of Aleatoric uncertainties in topological structures," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Zhang, Long-Wen & Dang, Chao & Zhao, Yan-Gang, 2023. "An efficient method for accessing structural reliability indexes via power transformation family," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    3. He, Wanxin & Wang, Yiyuan & Li, Gang & Zhou, Jinhang, 2024. "A novel maximum entropy method based on the B-spline theory and the low-discrepancy sequence for complex probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijrsaf:v:4:y:2010:i:2/3:p:166-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=98 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.