IDEAS home Printed from https://ideas.repec.org/a/ids/ijrsaf/v4y2010i2-3p122-138.html
   My bibliography  Save this article

Spherical subset simulation (S³) for solving non-linear dynamical reliability problems

Author

Listed:
  • Lambros Katafygiotis
  • Sai Hung Cheung
  • Ka-Veng Yuen

Abstract

This paper presents a methodology for general non-linear reliability problems. It is based on dividing the failure domain into a number of appropriately selected subregions and calculating the failure probability as a sum of the probabilities for each subregion. The probability of each subregion is calculated as a product of factors, which can be estimated accurately by a relatively small number of samples generated according to the conditional distribution corresponding to the particular subregion. These samples are generated through Markov Chain Monte Carlo simulations using a slice-sampling based algorithm proposed by the authors. The proposed method is robust and is suitable for high-dimensional problems. This is in contrast to popular importance sampling methods that often break down for high-dimensional problems. The method is found to be significantly more efficient than Monte Carlo simulations. The efficiency of the method is demonstrated with two examples involving 4000 and 1501 random variables.

Suggested Citation

  • Lambros Katafygiotis & Sai Hung Cheung & Ka-Veng Yuen, 2010. "Spherical subset simulation (S³) for solving non-linear dynamical reliability problems," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 4(2/3), pages 122-138.
  • Handle: RePEc:ids:ijrsaf:v:4:y:2010:i:2/3:p:122-138
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=32442
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sonal, S.D. & Ammanagi, S & Kanjilal, O & Manohar, C.S., 2018. "Experimental estimation of time variant system reliability of vibrating structures based on subset simulation with Markov chain splitting," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 55-68.
    2. Bansal, Sahil & Cheung, Sai Hung, 2017. "On the evaluation of multiple failure probability curves in reliability analysis with multiple performance functions," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 583-594.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijrsaf:v:4:y:2010:i:2/3:p:122-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=98 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.