IDEAS home Printed from https://ideas.repec.org/a/ids/ijrsaf/v12y2018i1-2p24-45.html
   My bibliography  Save this article

Numerical simulation of wooden structures with polymorphic uncertainty in material properties

Author

Listed:
  • Ferenc Leichsenring
  • Christian Jenkel
  • Wolfgang Graf
  • Michael Kaliske

Abstract

Uncertainties are inherently present in structural parameters such as loadings, boundary conditions or resistance of structural materials. Especially material properties and parameters of wood are strongly varying in consequence of growth and environmental conditions. To include this variation in structural analysis, available data needs to be modelled appropriately, e.g. by means of probability and, furthermore, fuzzy probability based random variables or fuzzy sets. In order to comprehend uncertainties induced by estimating the distribution parameters, the stochastic approach has been extended by fuzzy distribution parameters to fuzzy probability based random variables according to studies by Möller et al. To cope with epistemic uncertainties for e.g. geometric parameters of knotholes, fuzzy sets are used. The consequence for wooden structures is determined by fuzzy stochastic analysis in combination with a Finite Element (FE) simulation using a model suitable for characteristics of a timber structure by Jenkel and Kaliske.

Suggested Citation

  • Ferenc Leichsenring & Christian Jenkel & Wolfgang Graf & Michael Kaliske, 2018. "Numerical simulation of wooden structures with polymorphic uncertainty in material properties," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 12(1/2), pages 24-45.
  • Handle: RePEc:ids:ijrsaf:v:12:y:2018:i:1/2:p:24-45
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=92499
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Tiexin & Wang, Hongji & Li, Jinglai & Wang, Hongqiao, 2024. "Sampling-based adaptive design strategy for failure probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijrsaf:v:12:y:2018:i:1/2:p:24-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=98 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.