IDEAS home Printed from https://ideas.repec.org/a/ids/ijpqma/v13y2014i4p395-413.html
   My bibliography  Save this article

Performance evaluation of production companies using data envelopment analysis and Monte Carlo simulation: a case study

Author

Listed:
  • Hesam Soroush
  • Hadi Shirouyehzad

Abstract

Data envelopment analysis based on linear programming model, is a scientific approach, which evaluates the efficiency of organisations and units which use multiple inputs in order to produce multiple outputs. Data envelopment analysis models presented by Charnes, Cooper and Rhodes have intentional deficiencies, one of which is relying on data from periods of time that decision making units have passed. Therefore the results are based on past data. This is especially significant when the goal is to evaluate the current efficiency of units and forecast their future performance. On the other hand, classic DEA modes, such as BCC and CCR are based on the assumption that the precise and definite numerical value of all inputs and outputs are in hand, while in real world this is not always the case; specifically when the decision maker intends to evaluate the performance in long period of time in which values are definitively imprecise and inputs and outputs come as time series. The purpose of this article is to present an approach composing of DEA and Monte Carlo simulation which enables the decision maker to find the most efficient organisation in a given period of time, considering imprecise time series of data and also helps with forecasting and estimating the efficiency of companies in the future for a safe investment.

Suggested Citation

  • Hesam Soroush & Hadi Shirouyehzad, 2014. "Performance evaluation of production companies using data envelopment analysis and Monte Carlo simulation: a case study," International Journal of Productivity and Quality Management, Inderscience Enterprises Ltd, vol. 13(4), pages 395-413.
  • Handle: RePEc:ids:ijpqma:v:13:y:2014:i:4:p:395-413
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=62219
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijpqma:v:13:y:2014:i:4:p:395-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=177 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.