IDEAS home Printed from https://ideas.repec.org/a/ids/ijpqma/v12y2013i2p209-225.html
   My bibliography  Save this article

An intelligent multivariate approach for optimum forecasting of daily ozone concentration in large metropolitans with incomplete inputs

Author

Listed:
  • Ali Azadeh
  • Mohammad Sheikhalishahi
  • Morteza Saberi
  • M.H. Mostaghimi

Abstract

Previous studies show that it is quite necessary to accurately analyse and forecast ozone level especially in complex and large urban regions with incomplete inputs. Also, there is a need for more precise and efficient models to determine effective warning policies with respect to ozone concentration level in large cities. This study presents a flexible and adaptive approach to overcome the above issues. Moreover, an adaptive approach based on artificial neural network (ANN), adaptive neuro-fuzzy interference system (ANFIS) and conventional regression for forecasting of daily ozone levels is developed and discussed. The preferred model is selected via mean absolute percentage of error (MAPE). The proposed model is applied to one of the most polluted and populated cities in the world. Five pollutants and four meteorological variables are considered as inputs and ozone level is considered as output. The results show the flexibility of the proposed approach. The superiority and applicability of the proposed approach over previous models are also shown and discussed in this paper.

Suggested Citation

  • Ali Azadeh & Mohammad Sheikhalishahi & Morteza Saberi & M.H. Mostaghimi, 2013. "An intelligent multivariate approach for optimum forecasting of daily ozone concentration in large metropolitans with incomplete inputs," International Journal of Productivity and Quality Management, Inderscience Enterprises Ltd, vol. 12(2), pages 209-225.
  • Handle: RePEc:ids:ijpqma:v:12:y:2013:i:2:p:209-225
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=55553
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Muhitur Rahman & Md Shafiullah & Syed Masiur Rahman & Abu Nasser Khondaker & Abduljamiu Amao & Md. Hasan Zahir, 2020. "Soft Computing Applications in Air Quality Modeling: Past, Present, and Future," Sustainability, MDPI, vol. 12(10), pages 1-33, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijpqma:v:12:y:2013:i:2:p:209-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=177 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.